Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Med ; 11(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35566433

ABSTRACT

Corneal confocal microscopy (CCM) is emerging as a tool for identifying small fiber neuropathy in both peripheral neuropathies and neurodegenerative disease of the central nervous system (CNS). The value of corneal nerves as biomarkers for efficacy of clinical interventions against small fiber neuropathy and neurodegenerative disease is less clear but may be supported by preclinical studies of investigational agents. We, therefore, used diverse investigational agents to assess concordance of efficacy against corneal nerve loss and peripheral neuropathy in a mouse model of diabetes. Ocular delivery of the peptides ciliary neurotrophic factor (CNTF) or the glucagon-like peptide (GLP) analog exendin-4, both of which prevent diabetic neuropathy when given systemically, restored corneal nerve density within 2 weeks. Similarly, ocular delivery of the muscarinic receptor antagonist cyclopentolate protected corneal nerve density while concurrently reversing indices of systemic peripheral neuropathy. Conversely, systemic delivery of the muscarinic antagonist glycopyrrolate, but not gallamine, prevented multiple indices of systemic peripheral neuropathy and concurrently protected against corneal nerve loss. These data highlight the potential for use of corneal nerve quantification by confocal microscopy as a bridging assay between in vitro and whole animal assays in drug development programs for neuroprotectants and support its use as a biomarker of efficacy against peripheral neuropathy.

2.
Front Neurol ; 12: 663373, 2021.
Article in English | MEDLINE | ID: mdl-34211430

ABSTRACT

HIV-associated distal sensory polyneuropathy (HIV-DSP) affects about one third of people with HIV and is characterized by distal degeneration of axons. The pathogenesis of HIV-DSP is not known and there is currently no FDA-approved treatment. HIV trans-activator of transcription (TAT) is associated with mitochondrial dysfunction and neurotoxicity in the brain and may play a role in the pathogenesis of HIV-DSP. In the present study, we measured indices of peripheral neuropathy in the doxycycline (DOX)-inducible HIV-TAT (iTAT) transgenic mouse and investigated the therapeutic efficacy of a selective muscarinic subtype-1 receptor (M1R) antagonist, pirenzepine (PZ). PZ was selected as we have previously shown that it prevents and/or reverses indices of peripheral neuropathy in multiple disease models. DOX alone induced weight loss, tactile allodynia and paw thermal hypoalgesia in normal C57Bl/6J mice. Conduction velocity of large motor fibers, density of small sensory nerve fibers in the cornea and expression of mitochondria-associated proteins in sciatic nerve were unaffected by DOX in normal mice, whereas these parameters were disrupted when DOX was given to iTAT mice to induce TAT expression. Daily injection of PZ (10 mg/kg s.c.) prevented all of the disorders associated with TAT expression. These studies demonstrate that TAT expression disrupts mitochondria and induces indices of sensory and motor peripheral neuropathy and that M1R antagonism may be a viable treatment for HIV-DSP. However, some indices of neuropathy in the DOX-inducible TAT transgenic mouse model can be ascribed to DOX treatment rather than TAT expression and data obtained from animal models in which gene expression is modified by DOX should be accompanied by appropriate controls and treated with due caution.

3.
J Pharmacol Exp Ther ; 374(1): 44-51, 2020 07.
Article in English | MEDLINE | ID: mdl-32327528

ABSTRACT

Muscarinic antagonists promote sensory neurite outgrowth in vitro and prevent and/or reverse multiple indices of peripheral neuropathy in rodent models of diabetes, chemotherapy-induced peripheral neuropathy, and HIV protein-induced neuropathy when delivered systemically. We measured plasma concentrations of the M1 receptor-selective muscarinic antagonist pirenzepine when delivered by subcutaneous injection, oral gavage, or topical application to the skin and investigated efficacy of topically delivered pirenzepine against indices of peripheral neuropathy in diabetic mice. Topical application of 2% pirenzepine to the paw resulted in plasma concentrations 6 hours postdelivery that approximated those previously shown to promote neurite outgrowth in vitro. Topical delivery of pirenzepine to the paw of mice with streptozotocin-induced diabetes dose-dependently (0.1%-10.0%) prevented tactile allodynia, thermal hypoalgesia, and loss of epidermal nerve fibers in the treated paw and attenuated large fiber motor nerve conduction slowing in the ipsilateral limb. Efficacy against some indices of neuropathy was also noted in the contralateral limb, indicating systemic effects following local treatment. Topical pirenzepine also reversed established paw heat hypoalgesia, whereas withdrawal of treatment resulted in a gradual decline in efficacy over 2-4 weeks. Efficacy of topical pirenzepine was muted when treatment was reduced from 5 to 3 or 1 day/wk. Similar local effects were noted with the nonselective muscarinic receptor antagonist atropine when applied either to the paw or to the eye. Topical delivery of muscarinic antagonists may serve as a practical therapeutic approach to treating diabetic and other peripheral neuropathies. SIGNIFICANCE STATEMENT: Muscarinic antagonist pirenzepine alleviates diabetic peripheral neuropathy when applied topically in mice.


Subject(s)
Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 1/complications , Muscarinic Antagonists/administration & dosage , Muscarinic Antagonists/pharmacology , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/prevention & control , Administration, Topical , Animals , Female , Mice , Mice, Inbred C57BL , Muscarinic Antagonists/therapeutic use , Peripheral Nervous System Diseases/complications
4.
Sci Rep ; 9(1): 17158, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31748578

ABSTRACT

Mounting evidence suggests that antiretroviral therapy (ART) drugs may contribute to the prevalence of HIV-associated neurological dysfunction. The HIV envelope glycoprotein (gp120) is neurotoxic and has been linked to alterations in mitochondrial function and increased inflammatory gene expression, which are common neuropathological findings in HIV+ cases on ART with neurological disorders. Tenofovir disproxil fumarate (TDF) has been shown to affect neurogenesis in brains of mice and mitochondria in neurons. In this study, we hypothesized that TDF contributes to neurotoxicity by modulating mitochondrial biogenesis and inflammatory pathways. TDF administered to wild-type (wt) and GFAP-gp120 transgenic (tg) mice caused peripheral neuropathy, as indicated by nerve conduction slowing and thermal hyperalgesia. Conversely TDF protected gp120-tg mice from cognitive dysfunction. In the brains of wt and gp120-tg mice, TDF decreased expression of mitochondrial transcription factor A (TFAM). However, double immunolabelling revealed that TFAM was reduced in neurons and increased in astroglia in the hippocampi of TDF-treated wt and gp120-tg mice. TDF also increased expression of GFAP and decreased expression of IBA1 in the wt and gp120-tg mice. TDF increased tumor necrosis factor (TNF) α in wt mice. However, TDF reduced interleukin (IL) 1ß and TNFα mRNA in gp120-tg mouse brains. Primary human astroglia were exposed to increasing doses of TDF for 24 hours and then analyzed for mitochondrial alterations and inflammatory gene expression. In astroglia, TDF caused a dose-dependent increase in oxygen consumption rate, extracellular acidification rate and spare respiratory capacity, changes consistent with increased metabolism. TDF also reduced IL-1ß-mediated increases in IL-1ß and TNFα mRNA. These data demonstrate that TDF causes peripheral neuropathy in mice and alterations in inflammatory signaling and mitochondrial activity in the brain.


Subject(s)
Anti-HIV Agents/adverse effects , Brain/drug effects , Inflammation/pathology , Mitochondria/drug effects , Peripheral Nervous System Diseases/chemically induced , Tenofovir/adverse effects , Animals , Brain/metabolism , Cell Line , Disease Models, Animal , Gene Expression/drug effects , Humans , Inflammation/metabolism , Mice , Mice, Transgenic , Mitochondria/metabolism , Neurons/drug effects , Neurons/metabolism , Organelle Biogenesis , Peripheral Nervous System Diseases/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...